Toam I

Team I A New Design Paradigm

by Dr. Knut I. Oxnevad

Jet Propulsion Laboratory California Institute of Technology Pasadena, CA

- 1. In a Nutshell
- 2. Areas of Expertise
- 3. Approach
- 4. Conclusions & Summary

The work described in this presentation was carried out at the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Pasadena, CA, January 20, 2000

Approach

Gulliver

DS (ST)-4/CIRCLE

Search Camera for the CNES Orbiter

• Concurrent Design Environment

- Total Systems Approach, Multi-Disciplinary Team
- Standing Design Team
- From Concept to Engineering Drawings
- •Interconnected, High-End Optical, Microwave, Mechanical/CAD Thermal, Structural, Dynamics, Simulation, Orbital, Electronics Analysis and Design Tools, such as Code V, ZeMax, Mechanical Desktop, NASTRAN, Thermal Desktop, Adams, MODTool, and Working Model
- Applications Utilize a Common CAD Developed Geometry
- Open Environment, import/export of STEP, NASTRAN files, etc., from/to JPL, other NASA centers, and Industry
- Technology Insertion Through Cooperation with MDL/TAP
- Analysis and Design Time Cut from Months to Weeks

Loihi Deep Ocean, Volcanic Vent Probe

The Two Elements Function and Approach

1. Expertise

2. Approach (Design Paradigm)

Support; Expertise

- Expertise
 - Synthesis, Analysis, Simulation, and Design Support
 - Orbital and In-situ Payloads
 - Instruments to Fully Integrated Probes/Spacecraft
 - Optical, Microwave, Mass Spectrometer Instruments
 - Surface/Subsurface Pronbes. Rovers, Atmospheric Entry Vehicles, Dedicated SC.

Search Camera for the CNES Orbiter

Overall Process

Stations

Projection Screen

Approach (Design Paradigm): Integrated, High-End Analysis and Design

Approach Integration of Payload and SC/ Lander

Modified 03 Lander [STEP file]

Europa Orbiter [STEP file]

Approach Sizing and Configuration

Mars Outpost 50km Fuel Cell Rover

Mars Outpost 200m Drill

Lander Configuration

Surface Configuration

Packaged Configuration

Deployed Configuration

Summary and Conclusions

- A New and Unique Design Paradigm
- Cusotmers Clearly See Benefits: Development Time Reduced and Quality Increased
- The Team I Environment Consequently Can Be Seen As a <u>Laboratory for</u>

 <u>Developing Effective Conceptual Design Environments/Processes for</u>

 Demanding Types of Space Instruments, Probes, Rovers, Other Types of Surface Systems, Telecomm Systems. and SC.
- Team I Related Procedures and Processes are Beginning to Radically Change the Instrument/Probe Design Process at JPL.
- The Concurrent Design Paradigm and Design Approaches Discussed here have the Potential of Bringing Great Benefits to any Large and Complex Design and Analysis Problem